

# Recent updates in the management of the problem mare

Maria R Schnobrich VMD, DACT Rood and Riddle Equine Hospital, Lexington, KY

**KAEP January Meeting 2020** 



#### **Topics**

- Basic reminders on overall health
- Uterine treatments
  - Biofilm busters
  - Settle
  - PRP
- Misoprostol





## What do we need to focus on?

- Age
- Inflammation
- Weight
- Diet
- Lifestyle





## Effect of Diet on Reproduction

 Continuous forage associated with increases in fertility and decreased estrus abnormalities<sub>(Benhajali 2013)</sub>

- Sugar and starch increases systemic IR when compared to forage only or diet rich in fat and fiber (increased effect) with higher BCS<sub>(Hoffman 2003)</sub>
- Regardless of diet, the endometrium of obese mares had increased expression of pro-inflammatory cytokines and affected gene transcription in the embryo (Carnevale 2018)





## Effect of Diet on Reproduction

#### **Omega-3 fatty acid supplementation**

- Increases oocyte quality
  - 20 year old mares fed hay and balanced diet->23% transfer rate
  - After 8-16 weeks of DHA supplementation->51% transfer rate (Hembrooke 2018)
- Decreased inflammatory cytokines (TNF $\alpha$ ) in the mares serum by 51% (Hembrooke 2018)
- ullet Alters gene expression in the uterus and conceptus following supplementation  $_{ ext{(Jacobs 2018)}}$
- Allows oocytes of older mares (13-20) to mature and metabolize energy more efficiently (Catandi 2019)
- More fertilized eggs developed into blastocysts from the mares consuming the omega-3 fatty acid supplement (58%) than from the grain and corn oil supplement group (15%)<sub>(Catandi</sub>



## Reproductive Effects of Insulin Resistance (EMS)

#### Insulin resistance(IR) increases with:

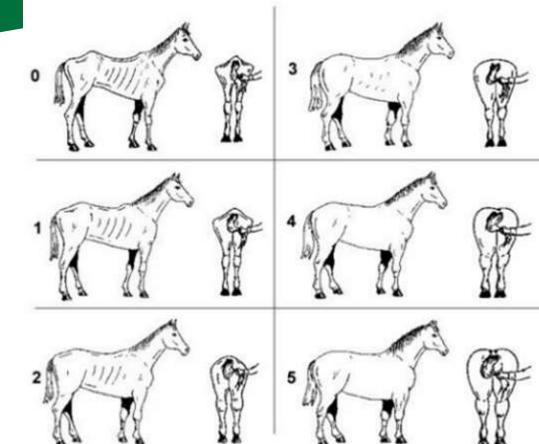
- Breed:
  - Ponies, Saddlebred, Arabian
- Increasing BCS
- Glucose dysregulation
- Age
- Mid-late Gestation

#### **Effect of increased serum insulin**

- Increased inflammation (IL-1,TNF  $\alpha$ )
- Decreases oocyte quality
- Increased inter-ovulatory period
- Decreased fertility
- Increased uterine inflammation



## How to Manage


#### **Diagnosis:**

- Resting insulin > 20μU/mL
- Resting glucose >100mg/dL
- Karo syrup test
  - Fast for 6 hours
  - Karo syrup (0.15mL/kg-75mL) oral
  - 60-90 minutes later
  - Insulin >50μU, glucose>100mg/dL



#### **Treatment:**

- Weight loss
- Decrease concentrates (<10% NSC) Hay</li>
- Levothyroxine sodium: 0.1-0.6mg/kg
- Metformin 30mg/kg PO, SID (Durham 2012)
- Resveratrol : 750mg PO, SID (Mafredi 2018)



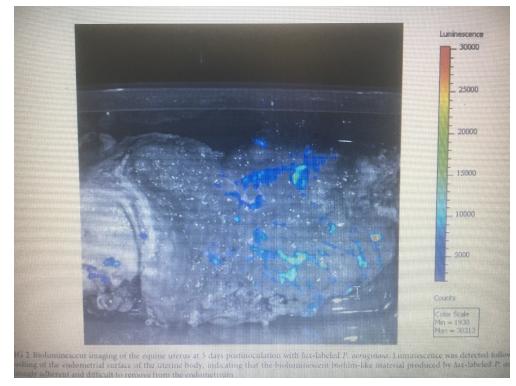


#### **Uterine Treatment**

- Efficacy of an antibiotic alone?
  - Time dependent vs. concentration dependent
- Antibiotic Resistance in Uterine Isolates
  - MDR was more frequent in Gram-negative (85.4%) than Gram-positive bacteria (23.5%)<sub>(Ferrer 2018)</sub>






# In Vitro Efficacy of Nonantibiotic Treatments on Biofilm Disruption of Gram-Negative Pathogens and an In Vivo Model of Infectious Endometritis Utilizing Isolates from the Equine Uterus.

Ryan A. Ferris, Patrick M McCue, Grace I Borlee, Kristen D Loncar, Margo L Hennet, Bradley R Borlee. Journal of Clinical Microbiology,

(2016), Vol 54, 3

• Bioluminescence imaging of *p.aeruginosa* biofilm in-vivo

 Demonstrated variable response of disruptors between bacteria





#### What can we do?


- Target treatment to disruption of biofilm
- Evidence of increased efficacy of antimicrobial treatment in conjunction with biofilm disruptors

|                               | Degradation Of Biofilm Biomass<br>(% isolates susceptible)                                                          | Killing Of Bacteria Within A Biofilm                                            |
|-------------------------------|---------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| E coli                        | Tris-EDTA/Tricide-100%<br>Acetylcysteine-100%<br>H <sub>2</sub> O <sub>2</sub> -100%<br>DMSO-100%<br>Ceragyn°- 100% | Acetylcysteine<br>H <sub>2</sub> O <sub>2</sub>                                 |
| K pneumonia                   | Ceragyn°- 90%                                                                                                       | $H_2O_2$                                                                        |
| P aeruginosa                  | Tris-EDTA/Tricide- 38%<br>H <sub>2</sub> O <sub>2</sub> - 50%<br>Ceragyn°- 50%                                      | Acetylcysteine                                                                  |
| S equi subsp<br>zooepidemicus | Tris-EDTA/Tricide H <sub>2</sub> O <sub>2</sub> DMSO Hypochlorous Acid Ceragyn®                                     | Tris-EDTA/Tricide H <sub>2</sub> O <sub>2</sub> DMSO Hypochlorous Acid Ceragyn® |

Table 1. Suggestions of compounds to use to degrade a preformed bacteria biofilm and kill bacteria residing within a preformed biofilm.

## How to Use a Modified Biofilm Assay in Clinical Practice

Cassandra Cromer, DVM\*; Ryan A. Ferris, DVM, MS, DACT; Etta Bradecamp, DVM, DACT, DABVP; and Maria Schnobrich, VMD, DACT



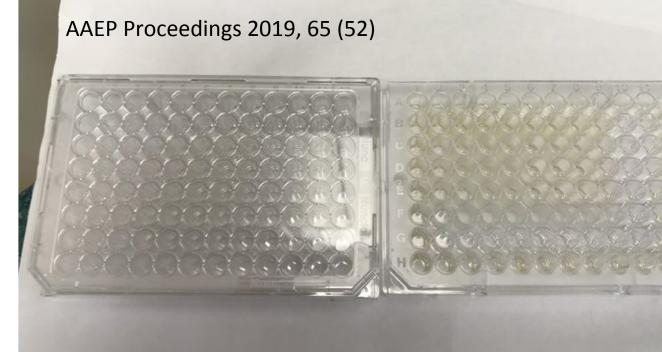



Table 1. Antimicrobials (Non-Antibiotic and Antibiotics) at Their Final Stock Concentrations

| Antimicrobial       | Concentration                    |  |  |  |
|---------------------|----------------------------------|--|--|--|
| HP                  | 3%                               |  |  |  |
| HP + ciprofloxacin  | 3% + 0.7  mg/mL                  |  |  |  |
| HP + amikacin       | 3% + 4  mg/mL                    |  |  |  |
| HP + ceftiofur      | 3% + 0.4  mg/mL                  |  |  |  |
| Tricide             | 8 mM disodium EDTA dehydrate and |  |  |  |
|                     | 20 mM 2-amino-2-hydroxymethyl-   |  |  |  |
|                     | 1,2-propanediol                  |  |  |  |
| Tricide +           | 8 mM disodium EDTA dehydrate and |  |  |  |
| ciprofloxacin       | 20 mM 2-amino-2-hydroxymethyl-   |  |  |  |
|                     | 1,2-propanediol + $0.7$ mg/mL    |  |  |  |
| Tricide +           | 8 mM disodium EDTA dehydrate and |  |  |  |
| amikacin            | 20 mM 2-amino-2-hydroxymethyl-   |  |  |  |
|                     | 1,2-propanediol + 4mg/mL         |  |  |  |
| Tricide + ceftiofur | 8 mM disodium EDTA dehydrate and |  |  |  |
|                     | 20 mM 2-amino-2-hydroxymethyl-   |  |  |  |
|                     | 1,2-propanediol + $0.4$ mg/mL    |  |  |  |
| DMSO                | 30%                              |  |  |  |
| Povidone/Iodine     | 0.1%                             |  |  |  |
| Acetylcysteine      | 3.3%                             |  |  |  |
| Vinegar             | 1.25%                            |  |  |  |

DMSO, dimethylsulfoxide; EDTA, ethylenediaminetetraacetic acid; HP, hydrogen peroxide.

## Results

| <u>Antimicrobial</u> | Killing of bacteria in biofilm phenotype | <u>Antimicrobial</u>    | Killing of bacteria in biofilm phenotype |  |  |
|----------------------|------------------------------------------|-------------------------|------------------------------------------|--|--|
| Povidone/iodine      | 100%, (23/23)                            | HP + Ciprofloxacin      | 100%, (19/19)                            |  |  |
| HP                   | 95.6%, (22/23)                           | HP + Ceftiofur          | 100%, (18/18)                            |  |  |
| DMSO                 | 95.6%, (22/23)                           | HP + Amikacin           | 94.4%, (17/18)                           |  |  |
| Vinegar              | 95%, (19/20)                             | Tricide + Ciprofloxacin | 94.4%, (17/18)                           |  |  |
| Tricide              | 39.1%, (9/23)                            | Tricide + Amikacin      | 88.8%, (16/18)                           |  |  |
| Acetylcysteine       | 10.5%, (2/19)                            | Tricide + Ceftiofur     | 88.8%. (16/18)                           |  |  |

### Compounds with 100% efficacy

|                                | <u>HP</u> | <u>HP+</u><br><u>Cipro</u> | <u>HP+</u><br><u>Ceftiofur</u> | <u>HP+</u><br><u>Amikacin</u> | <u>Tricide+</u><br><u>Ciproro</u> | <u>Tricide +</u><br><u>Ceftiofur</u> | <u>Tricide+</u><br><u>Amikacin</u> | <u>PI</u> | <u>DMSO</u> |
|--------------------------------|-----------|----------------------------|--------------------------------|-------------------------------|-----------------------------------|--------------------------------------|------------------------------------|-----------|-------------|
| <u>Strep</u>                   | •         | •                          | •                              | •                             | •                                 | ~                                    | •                                  | •         | •           |
| <u>E. coli</u>                 |           | <b>✓</b>                   | <b>✓</b>                       | <b>✓</b>                      | <b>✓</b>                          | <b>✓</b>                             | <b>✓</b>                           | •         |             |
| <u>Klebsiella</u>              |           | •                          |                                |                               | <b>✓</b>                          |                                      | <b>✓</b>                           | <b>✓</b>  | <b>✓</b>    |
| <u>Pseudo-</u><br><u>monas</u> | •         |                            |                                |                               |                                   |                                      |                                    | <b>✓</b>  |             |
| <u>Yeast</u>                   | <b>✓</b>  |                            |                                |                               |                                   |                                      |                                    | <b>✓</b>  | <b>✓</b>    |

#### How to use in Practice?

- Povidone Iodine
  - In Cromer study 0.1% Povidone-iodine solution effective in 100% of cases
  - Antimicrobial activity at 0.01% solution<sub>(Brinsko 1991)</sub>
  - $\circ$  Range of published reports with minimal inflammation 0.05 (Brinsko 1991) 1% solution (Kalpokas 202)

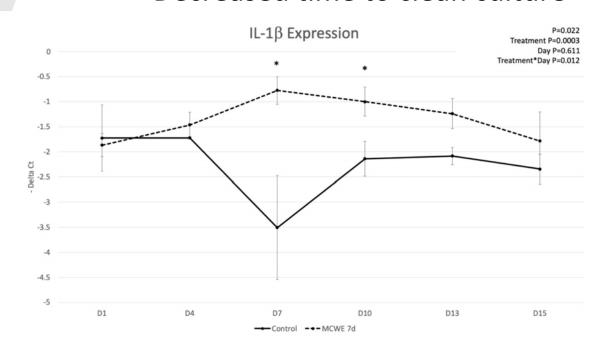
#### Recommendation:

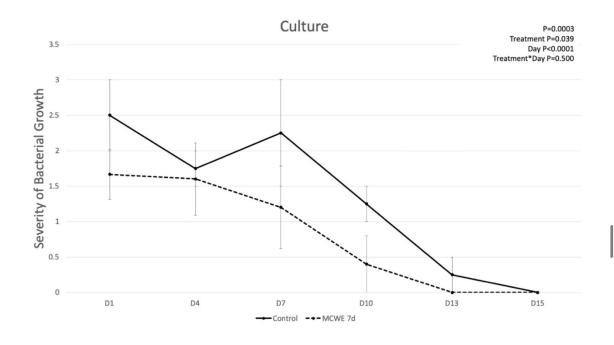
- Large volume .1% solution Povidone-Iodine in LRS
  - 20mL Betadine solution/ 1 L LRS from 5% povidone iodine stock solution





## Mycobacterium Cell Wall Extract


- Immunomodulator made from Mycobacterium cell wall extract (MCWE)
- Treatment of susceptible mares with MCWE served to downregulate IL-1b and TNF $\alpha$  levels at estrus and IL-6and TNF $\alpha$  levels during diestrus, resulting in cytokine levels similar to those of resistant mares (Fumoso 2003)
- IU and IV routes equally as effective (Fumoso 2004)
- Single dose of Settle caused significant reduction of infection with *S. zooepidemicus*. Elimination of endometritis in 35% of the mares by the time of ovulation, and 70% of the mares by 7 days post-ovulation<sub>(Rogan 2007)</sub>






# MCWE in post-partum mares (Fedorka 2019)

- Administration of a single IV dose led to:
  - increase in pro-inflammatory cytokines
  - Decrease of bacterial growth severity
  - Decreased time to clean culture







#### Platelet Rich Plasma

#### What is it and why is it good?

- Platelet-rich Plasma (PRP) or Autologous conditioned plasma is made when whole blood is centrifuged and red cells are removed. Contains variable platelets and their associated plasma proteins.
- Contains growth factors important in tissue repair due to mitogenic, chemotactic, neovascular, and anti-inflammatory effects
- The chemokines alter the chemotactic gradient to inhibit migration of leukocytes from the circulation into the tissue<sub>(Alam 1992)</sub>
- Another study found that platelets cause an initial suppression of IL-1 released by activated macrophages<sub>(Woodall 2008)</sub>



### **Breeding Applications or PRP**

- PRP was effective in modulating the exacerbated uterine inflammatory response to semen in mares with Chronic Degenerative Endometritis(CDE) but did not reduce NO concentrations in intrauterine fluid (Reghini 2016)
- PRP infused (20mL) 24hour prior to or 4 hours after insemination beneficially reduces inflammatory response in PMIE mares (Segabinazzi 2017)
- Conception rates were significantly higher in the mares treated with PRP pre- and post-breeding (Segabinazzi 2017)



#### How to prepare PRP



#### (Reghini 2016)

- 100mL in 3.2% Sodium citrate tube
- Centrifuge #1: 120g for 10min-discard upper 50%
- Centrifuge #2: 240g for 10 min-discard upper 50%
- PRP maintained for 1 hour at 20- ° 25°C
- Calcium chloride solution at 0.068 mEq calcium / mL of PRP
- The minimal platelet concentration used as a treatment was 250.000 platelets/mL







# Application of Misoprostol as a Treatment of Unexplained Infertility in Mares

Alvarenga MAA, Segabinazzi LG. Journal of Equine Veterinary Science 2018;71:46-50

- One Cytotec tablet (200 mcg of Misoprostol, Pfizer, USA) diluted in 3 mL of sterile water, in each horn, aiming the application as close as possible to the papilla of uterine tubes.
- These procedures were performed during diestrus
- Mares were bred in the next cycle.
- Embryos were produced, or a pregnancy was obtained from 15 of the 22 mares within the first two cycles following Cytotec treatment.



# How to Use Misoprostol (PGE<sub>1</sub>) Application in Deep-Uterine Horn to Treat Mares with Unexplained Infertility

Marco A. Alvarenga, DVM, PhD\*; and Lorenzo G.T.M. Segabinazzi, DVM, MS† AAEP Proceedings 2019, 65, pg 41-45

- 42 mares, failure to conceive multiple cycles, ≥ two stallions
- Deep-horn application of 200ug misoprostol in 3mL sterile water in estrus or diestrus
- 69%(29/42) conceived following treatment
  - 18/28 on first cycle
  - 9/28 on second cycle
  - 2/28 on third cycle



## When and how to use misoprostol

- Case selection:
  - No evidence of uterine pathology (culture, biopsy, hysteroscopy)
  - Failure to conceive when bred well to multiple stallion:
- Treatment:

Deep-horn application of 200ug misoprostol (1 Cytotec tab) in 3mL sterile water in estrus:

- Lavage daily (LRS) until efflux is clear
- Oxytocin 10 iU, IM, BID through last day of lavage

#### Diestrus:

- Administer luteolytic agent 6 hours after treatment
- · Lavage the next day, and daily until efflux clear

Allow mare to ovulate and breed on next estrus.



